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Abstract. Theconcentr:~tions  ofhy({r(~gen  riidic:ils,  OHan[l  HOl, it~tl~et~~iddle
and upper troposphere were measured simultaneously with those of NO, 0~,
CO, HzO, CH4, non-methane hydrocarbons, and with the ultraviolet and visible
radiation field. The data allow a direct examination of the processes that
produce 0~ in this region of the atmosphere. Comparison of the measured
concentrations of OH and HOZ with calculations based on their production from
water vapor, ozone, and methane demonstrate that these sources are insufficient
to explain the observed radical concentrations in the upper troposphere. The
photolysis  of carbonyl  and peroxide compounds transported to this region from
the lower troposphere may provide the source of HOX required to sustain the
measured abundances of these radical species. The mechanism by which NO
influences the production of OS is also illustrated by the measurements. In the
upper tropospheric air masses sampled, the production rate for ozone
(determined from the measured concentrations of H02 and NO) is calculated to
be about 1 part per billion by volume each day. This production rate is faster
than previously thought, and implies that anthropogenic activities that add NO
to the upper troposphere, such as biomass burning and aviation, will lead to
production of more Cls than expected.

The hydrogen radicals OH and H02 (collectively known as HO,) are central to the
photochemistry of the troposphere (1). Although present at a mixing ratio of typically less
than a few parts per trillion by volume (pptv),  OH largely defines the oxidative power of
the atmosphere (2). The oxidation of carbon monoxide (CO) and other hydrocarbons by
OH is the dominant mechanism for the production of 03 in the troposphere. It has been
long assumed that the major source of HO, in the lower atmosphere is the reaction of
excited state oxygen atoms (produced in the photolysis  of 0s) with H20, with an
important contribution from the oxidation of methane (CH4). Photochemistry has been
thought to be slow in the upper troposphere (defined here as the region between 8 km and
the local tropopause) because the low concentration of HzO was thought to preclude
significant HO. chemistry. It has been suggested, however, that the photolysis  of acetone
(3), hydrogen peroxide, HOOH (4), and mcthylhydrogen  peroxide, CH300H  (5,6),
transported from the lower troposphere can provide a significant source of HOX in the
upper troposphere.

We report here observaticms  of OH and HOZ in the upper troposphere. The measured
concentrations of these radicals are significantly larger than would be expected on the
basis of production from 0s, HzO, and CH~ alone. Inclusion of production of HOX from
the photolysis  of acetone leads to much better agreement between calculated and observed
HOX. However, in air masses where there are indications of recent convective transport
from the lower troposphere, observed concentrations of HO. are often greater than
calculated even when HO. production from acetone is included. This finding is consistent
with the theory that additional HOX sources, such as peroxides, are important in the
photochemistry of this region of the atmosphere.
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These observations suggest that photochemistry in the upper troposphere has a much
greater global significance than previously bclicvcd.  The production of 03 in this region is
rapid, and this chemistry influences (he radiative balance at Earth’s surface. These
measurements directly illustrate that in the upper troposphere, the production rate of
ozone increases rapidly with the concentration of NO. Thus, the presence of larger than
expected concentrations of HOX means that NOX pollution emitted from aircraft will lead
to the production of significantly more Oj than calculated in recent modeling work (7).

Measurements

All observations were obtained between October 1995 and ALlgLISt 1996 with instruments
aboard the NASA ER-2 aircraft (8). The flights were made near the airfields of operation:
NASA-Ames Research Center, Mountain View, California (37°N,  122~)  and Barbers
Point Naval Air Station, Hawaii (21 ‘N, 158W).  Typically, the ER-2 ascended quickly to
10 km before commencing a series of flight legs of 1/2 hour duration, staggered at
approximately 2 km until maximum altitude was reached (21 km).

A key test of both the instrumentation and our understanding of atmospheric
photochemistry is the measurement of the diurnal dependence of the concentration of the
free radical species, OH, HOZ, and NO. Because these radicals are produced by photolytic
processes, their concentration is expected to be negligible at night. On 3 August 1996, the
ER-2 flew a series of flight legs near Hawaii beginning one hour prior to sunrise. In
contrast to the other flights, the ER-2 maintained constant altitude ( 11.8 km) for many
flight legs. The measured concentration of the hydrogen radicals, ([OH] and [HOZ]),  were
not statistically different from zero during the night (Fig. 1). This directly demonstrates
that the ER-2 HOX instrument does not suffer from artifacts that have hampered previous
attempts to measure tropospheric OH with laser-based techniques (9).

We have used a photochemical  mode],  constrained by the measured [NO], [CO], and the
hydrogen radical precursors, [0s],  [H20], and [CH4] to calculate [OHI (IO. consistent
with the observations, the calculated [OH] depends strongly on [NO] (Fig. 1). However,
the absolute magnitude is significantly smaller than the measurements. The disagreement
is largest at high solar zenith angles (sza). As will be discussed, the discrepancy is typical
of upper tropospheric measurements and reflects the presence of primary HO. sources in
addition to the simple 03, HzO, and CH~ photochemistry.

The catalytic cycling of HO, and the production of 0~

The partitioning of the HO, family between OH and HOZ changes significantly as a
function of altitude, reflecting important differences between the photochemistry of the
stratosphere and the troposphere. In the lower stratosphere, the cycling of OH and HOZ
via reactions with OS represents an important catalytic pathway for 0~ destruction (11).
In the upper troposphere, on the other hand, the low temperature, low mixing ratio of OS
(e 150 parts per billion by volume (ppbv)),  and high abundance of CO (> 50 ppbv)
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completely change the impact of HO, catalysis. HOX cycling changes from being the major
sink of Oj in the lower stratosphere to the major source of OJ in the upper troposphere:

OH + CO —~-> HOZ + COZ
HOZ + NO —> OH + N02

NOZ + hv — )  NO+O
(3)

0+02 —) 03
Net: CO + OZ + Oz —) C02 + 03.

Simultaneous measurements of [OH],

(1)
(2)

(4)

NO], and [CO], combined with the
measured rate coefficients for reactions 1 and 2 (12), provide a direct test of this
photochemistry. The agreement between the measured and calculated ratio of [HOZ] to
[OH] in the upper troposphere is quite remarkable (Fig. 2), particularly given that the
uncertainty in the rate of reaction 1 alone has been estimated to be nearly a factor of two
(16) (12). The data suggest that the photochernical  processes that cycle HOK and lead to
OS production (reactions 1 and 2) are well understood. Provided that reactions 1 and 2
define the major pathway for cycling OH and HOZ, the rate of Os production will equal the
rate of these reactions: Po~ = k] x [OH] x [CO] = kz x [H02] x [NO]. To understand the
production of 03 in the upper troposphere we therefore need to understand what controls
the absolute concentration of HOX.

Sinks and Sources of HO, in the upper troposphere

To test whether our understanding of the HO, budget is complete, we calculate the rate of
HOX destruction (which can be inferred from the ER-2 measurements) and ask whether
this sink can be balanced by known sources. We expect production and loss to balance
because the lifetime of HO. in the upper troposphere is relatively short (5-30 minutes).

HO. Sinks
Individually, the lifetime of OH or H02 is seconds to minutes and is determined largely by
the rates of reactions 1 and 2 which cycle OH and HOZ rapidly. The lifetime of the HOX
family, however, is significantly longer and is determined by processes that eventually lead
to the production of water vapor. The loss rate of HO, can be estimated using the
measurements of [OH], [H02], [NO], and [NOY] (13), combined with calculated
photolysis rates (10) and the measured kinetic rate constants (12).
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The major processes that remove HO. in the upper troposphere are:

net: O H  +  H 02 --) H 20 + Oz

O H +  NOZ +M + HNOj + M
OH + HNOS + HzO + N03

(5)

(6)

(7)

net: OH + OH + NOZ + H 20 + NO{

HOZ +  NOZ +M + HNOA +M (8)
O H  +  HNOg -+ H 20 + N02 + 02

net: O H +  H 02  + H 20 + 02

The competition between photolysis  of HZ02, HNOS, and HNO1 and their reaction with
OH determines the efficiency of HOX removal for processes 6-8. From our measurements
and the appropriate rate constants for these reactions (12), we estimate that process 5
accounts for more than 60 percent of the total loss rate of HOX in most of the upper
tropospheric air masses sampled. As a result, the sink depends quadratically on [HO.] and
the photochemistry is strongly buffered.

Autocatalytic HO. Sources
The concentrations of HO. are partially maintained through the autocatalytic  oxidation of
hydrocarbons. For example, although OH is initially consumed in the oxidation of CHO:

OH + CH4 + CHS + H20, (9)

subsequent chemistry leads to net HOX production:

CH3 + OZ + CHSOO
CHjOO + NO + CHSO + N02

CH30 + 02 -+ CH20 + H02

CH20 + hv
--+ H2+C0

(lo)

(-2/3)

—*-o+ 2 H02 + co (-1/3)

When [NO] is sufficiently high (which is usually the case in the upper troposphere) almost
two molecules of HOZ are produced for each OH lost via reaction 9 (14). Although
oxidation of other hydrocarbons also results in net production of HOX, in the air masses
sampled, the rate of CH4 oxidation significantly exceeds the oxidation rate of all other
hydrocarbons combined (15). From the measured [OH] and [CHd],  we calculate that
autocatalytic  HOX production is equal to approximately half of the calculated HOX sink.
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This source can only amplify other sources; without so-called
there would be no OH and hence autoctitalytic  production would

Primary Sources of HOI

Wcnnherg et al.

primary sources of
not occur.

The reaction of excited state oxygen atoms, 0(1 D), with HzO is usually considered
the dominant mechanism for primary production of HOX in the troposphere (2):

Oj + hv + O(*D) + OL
O(lD) + HzO -+ OH + OH (1

net: Os + HzO + OH + OH + 02

6

HO.

ok

1)

Recent measurements and analysis have greatly improved our understanding of the
production of O(lD) from the photolysis  of OS. These studies indicate that throughout the
troposphere and lower stratosphere, the 0(’ D) production rate is larger than previously
thought (16). Nevertheless, we calculate from the measured [H20] and [03] that process
11 can account for only a small fraction of the primary HOX production required to
balance the calculated sink of HO, in many of the tropospheric air masses encountered
above 10 km.

Recently Singh  et al. (3) have suggested that the photolysis  of acetone (17) can account
for significant production of HO, in the upper troposphere:

CHSCOCHS  + hv --+ CHSCO + CH~ (12)
CHSCO + Oz + CHSC(0)OO (13)

CH~C(0)OO + NO + CHS + COL + NOL (14)

The subsequent chemistry of CH~ (process 10) leads to production Of HOL.

Acetone was not measured in our study. We have estimated the abundance of acetone
from the measured [CO] using a correlation between these species observed in the upper
troposphere on a previous aircraft campaign (18). From this relation, we estimate the
concentration of acetone to be 300 pptv for the typical concentration of CO (70 ppbv). In
the arid upper troposphere the production of HO. from photolysis  of this small
concentration of acetone can be many times larger than the contribution from the reactions
of O(lD) with HzO.

Fig. 3 shows the calculated HO. production rate and the measured [OH] as the airplane
descended into Barber’s Point on the afternoon of 11 November 1995. The sza was 70
degrees. Between 10 and 15 km, the photolysis  of acetone is calculated to produce nearly
5 times more HO. than process 11. With the inclusion of the photolysis  of acetone, the
calculated [OH] increases by about a factor of two in the upper troposphere, improving
agreement with the measurements, particularly above 10 km. The role of acetone is most
pronounced when the sun is low in the sky (as in this descent) because the production rate
of 0(1 D) from OJ photolysis  occurs at shorter wavelengths than acetone and thUS iS nlore
strongly peaked at solar noon. As illustrated in Fig. 3 the 24-hour average HO,
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production rate from ozone photolysis  (dashed blue line) is significantly larger than the
rate calculated for the time of day of this descent. Thus for measurements made at high
sun (low sza), pat~icularly those made during the summer, we find that the agreement
between calculated and measured [HO.] is less sensitive to the presence of acetone.

Even with the inclusion of acetone in our analysis, the calculated [OH] and [H02] can
sometimes be as much as a factor of 5 smaller than observed (6). This is particularly true
of the measurements made during the winter. Early work by Chatfield  and Crutzen  and a
more recent paper by Prather and Jacob suggest that convective transport of peroxides
such as H20Z (4) and CH~OOH (5,6) may provide a large source of HO, in the upper
troposphere. Consistent with this theory, the largest differences between calculated and
measured [HO.] are correlated with indicators of the recent convective origin of the air
such as high relative humidity and elevated [CIl~I] (a short-lived marker of transport from
the planetary boundary layer) (6, 19). Recent HOX measurements made from the NASA
DC-8 aircraft also suggest that HO, precursors are transported in convective events (20).
While H20Z is highly water soluble and should be scavenged efficiently in precipitation
associated with convective updrafts, CH~OOH  is only sparingly soluble  (21) and can
therefore be transported over larger distances (22). Although the transport of CHXOOH
simply redistributes a HO. reservoir from the lower to the upper troposphere, the impact
on the photochemistry in the troposphere is significant because, as discussed below, the
amount of OS produced per molecule of HO, increases with altitude.

The lack of simultaneous measurements of acetone and peroxides leaves uncertainty in our
inference of the species responsible for maintaining the large concentrations of HOX
measured in the upper troposphere. Further measurements during other seasons and at
different locations are needed to investigate whether the conclusions about missing HOX
sources are robust globally. Simultaneous measurements of HOX, acetone and the
peroxides are clearly required. Nevertheless, the observations described here show that
measured [OH] and [H02] cannot be sustained by primary production from the reaction of
O(lD) with H20 alone (process 11). Photochemical  models that include only this source
of HO, will significantly underestimate [OH] and [H02] in the arid upper troposphere. It
is likely that this underestimate of [HO.] is typical of the entire upper troposphere of the
tropics and sub-tropics because the low temperature at and above 10 km generally
restricts [H20] to less than 100 parts per million by volume (pprnv).  Because the major
primary source of HOX in these air masses is not process 11, the rate of Os production
does not, to first order, depend on either [0s] or [HzO].

HO., NO, and the 03 production efficiency

In our measurements, the mixing ratio of NO was usually between 50 and 200 pptv in the
upper troposphere. This high concentration is not atypical; previous airborne
measurements have shown that in the tropical and middle latitudes, [NO] usually increases
with altitude (23). The elevated [NO] in the upper troposphere directly influences the
efficiency of OJ production. This efficiency is often described in terms of the NO chain
length (the number of OJ molecules produced before NO is converted to HN03). This is a
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useful construct for the lower troposphere where most of the nitric acid is removed
heterogeneously via rainout  or dry deposition to the surface. In the upper troposphere,
however, significant recycling of HNOS back to NO occurs via photolysis  and reaction
with OH. As a result, the NTO chain length does not necessarily limit 03 production.

The data presented here suggest that the primary sources of hydrogen radicals in much of
the upper troposphere are the photolysis  of transported HOX precursors other than 0~ and
HZO. Thus, the Os production efficiency will, in part, be regulated  by the HO, chain
length, (the number of 03 molecules produced fronl these transported HO, precursors).
NO and NOZ are the key species that determine this chain length. As discussed above, NO
controls the partitioning within the HO, family; the larger [NO], the smaller the ratio of
[HOZ] to [OH]. Increases in [NO] therefore lead to a f~ster rate of cycling within the HO.
family (reactions 1 and 2) with respect to the major HO. sink (reaction 5), and as a result,
more OS is generated from each molecule of HO, before it is destroyed. In addition,
increases in [NO] also accelerate autocatalytic  production of HO, (process 9 and 10)
because this process depends on [OH], which is usually positively correlated with [NO]
(Fig. 1). Thus we expect the HOX chain length (and therefore the Os production rate) to
increase rapidly with [NO].

The sensitivity of the production rate of Os to [NO] is illustrated by data obtained near
San Francisco on 2 February 1996. On this flight, the ER-2 encountered an air mass with
widely varying [NO] and only small changes in [HZO] (70 * 15 ppmv),  [CO] (95 f 10
ppbv),  and [03] (60 * 10 ppbv). The source of the NO n~ay have ken aviation exhaust)
as numerous fresh plumes were observed with very high ratios of [NO] to [NOY] and small
spatial extent (< 500 m). The non-plume observations illustrate the dependence of Os
production on [NO]. For these calculations, the production rate of 03, Po~, is assumed to

equal the rate of reaction 2, Po~ = kz x [H02] x [NO], where kz is the rate coefficient for
this reaction (12). For very low [NO] (<1 x 108 mol cm-s), the HOX cycling occurs mostly
via the self reaction of HO1 followed by the photolysis  of HZ02 and therefore, [H02] is
independent of [NO]. Po~ is very low and increases linearly with [NO]. At larger [NO],
[HOZ] begins to decrease, and POj increases more slowly than the rise in [NO].

The calculated response of [HOZ] and PO1 to variations in the primary production rate of
HOX (Fig. 4), shows clearly that the additional primary HOX sources significantly increase
Pot. For all calculated scenarios, Po~ is predicted to be inversely correlat~d  with [No] for
[N-O] >5 x 109 rnol cn~-s, because processes 7 and 8 become important sinks of the
hydrogen radicals leading to a reduction in the HO, chain length. Additional atmospheric
and laboratory studies detailing the photochemistry of HN03 and HNO.i are required to
understand better how PoJ will vary at very high concentrations of NO.

The response of Os production to changes in [No] illustrated in Fig. 4 is not generic: the
response is larger when primary production of HO. is enhanced. Furthermore, the level of
NO for which the HOX chain length begins to decrease depends on the ratio of [NOZ] to
[NO], which is strongly dependent on temperature and [W (24. For these flights  [No]
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in the upper troposphere increases with altitude and as a result, the HO. chain length also
increases. We calculate that the chain length typically increases from about 5 at -7 km to
10-20 near the tropopause. This long chain length is important for 0~ production only
because there is significant HOX production in the upper troposphere fueled  by acetone
and other transported HOK precursors. From the observations of [HOZ] and [NO], we
calculate about 1 ppbv of Os is produced each day in the upper tropospheric air sampled.
In some air masses with very high [NO], POJ exceeded 5 ppbv per day.

Significance

The measured [HO.] suggests that in situ photochemistry occurring in the upper
troposphere plays a much more important role than previously thought in determining the
concentration of 0s. Limited observations of the change in tropospheric 03 since pre-
industrial times suggest that the increase in Os has contributed about 0.4 Wm”2 to the
global mean radiative forcing at the surface (25). Because the Oq changes have occurred
mostly in the northern hemisphere, the forcing in this hemisphere may be twice as large.
For comparison, the total increases in the global mean forcing from increases in the
concentrations of long-lived greenhouse gases (such as COZ, N20, and CH4) is estimated
to be 2.45 Win-2 (25). The measured [HO.], [CO], and [NO] are consistent with a
photochemical  production rate for Os of about 1 ppbv per day in the upper troposphere.
Because the upper troposphere is flushed relatively quickly, the data suggest that
chemistry occuring  in this region may significantly affect the concentration of 0~
throughout the lower atmosphere.
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Fig. 1. Sunrise measurements of NO (A) and OH (B). The measurements have been
filtered with a I-nlinute  running median. A photochemical  model, constrained by the
observed abundance of NO, CO and long-lived species such as 03 and HzO, has been used
to calculate OH. Although the structure in measured [OH] (driven by the variation in
NO), is mirrored in the calculation (B, gray line), the absolute magnitude is significantly
smaller. This model scenario assumes that the source of the hydrogen radicals is limited to
simple 03, H20, and CH4 photochemistry. At sunrise, the concentration of NO increases
more rapidly than OH due to the rapid photolysis  of its source, N02.

Fig. 2. The partitioning of HO. in the upper troposphere. The processes which produce
OJ in the troposphere determine the ratio of [HOZ] to [OH] (reactions 1 and 2). The
agreement between the measured and calculated ratio is much better than could be
expected given the uncertainty in the thermal rate coefficients (+120% - 70%) for these
reactions and the measured ratio (f 20’%0). For example, shown on this plot as dashed
lines are the calculated ratios determined by adjusting the rate constant for reaction 1 to its
10 uncertainty limits (12). This figure includes data for which NO and OH are more than
10 times above their detection limit (50, and 0.25 pptv respectively). In addition, to
ensure that the partitioning is not influenced by production or loss of HOX, only data
where the calculated HO, cycling rate is significantly faster than the calculated rate of HO,
destruction (and therefore HO, production) is shown.

Fig 3. The production rate of HO. (A) and the concentration of OH (B) on 7 November
1995. (A) As shown in blue, the HOX production rate from the reaction of O(lD) with HzO
(process 11), drops by orders of magnitude between 7 km and the tropopause following
the drop in the mixing ratio of HzO. Shown in red is an estimate of the HOX production
rate from photolysis  of acetone, which recent measurements have shown is ubiquitous in
the upper troposphere. Both the instantaneous production rates (solid lines) and the 24-
hour average rates (dashed lines) are shown. (B) Without the acetone source, the
measured [OH], shown here filtered with a 30-sec running median, and [H02] (not shown)
are underpredicted by about a factor of 2 between 12 km and the tropopause. Even with
acetone, [HOX] is often underpredicted. For example at the bottom of this profile,
measured OH concentrations are 20-10070 larger than calculated. Typical of all the
observations, the agreement between calculated and measured [OH] is excellent in the
stratosphere.
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Fig. 4. The relationship between 03 production and NO. Measurements made on 2
February 1996illustrate  howthe  03prodllc[ion  r:itedepends  on NO. At 240mb (10.7
km),large variability in NOwas observed. Numerous aircraft plumes with very high [NO]
(> lppbv) were also sampled at this altitude. Because the photochemistry within the
plumes is far from photochemical equilibrium, only data obtained in the background
atmosphere are shown here. To exclude the plumes, the data was sorted for NO/_NOY c
0.3 and for times when the concentration of NO changed by less than 50 pptv per second
(corresponding to 210 m spatial extent). Three model curves illustrate how [HO,] (A)
and the 03 production rate (B) vary as a function of assumptions about the production
rate of HO.. In blue, acetone is assumed to be zero; the primary HO. source is limited to
production from the reaction of 0(1 D) with H20. In red, acetone is assumed to be present
at 400 pptv (18). In green is shown a calculation where we have increased the primary
HOX source to a value consistent with the HO, observations. At very high [NO] the
calculations predict that 03 production will be anticorrelated  with [NO] because the HOX
chain length becomes shorter as the large concentration of N02 increases the HO, sink via
processes 7 and 8.



I I I 1 I I I

.

.

.

..*

.-9 * ‘k

.-%iJ-.

-@*

●48—.@?-#
● 4

*O,.  \

.

I I 1 I I I g I I1 I I

0
v)

0
0 0

a)
r &

V2

om



25

20

15

10

5

0

/]

/1//
/

o 0

00
00 .9
00

0 0
00

~o

,/ 1 1 1 1 I 1 1 1 1 —

o 5 10 15 20 25

[H02] / [OH] (Measured)

Figure 2



,

0
N

00 o
OQ

1 1 I 1 I 1 I 1 I r I r I r

k)

,’---~

I
●

. .

“v n
1’ : w

m

c1

o

‘o

‘o
w

,,z
o



.

0
v)
m

o0

n

o

m
I I I I I I I 1


